
Hedging Climate Risk: a Two-Step Factor Mimicking
Approach⋆

Clément Aymard∗

Abstract
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1. Introduction

Climate change poses an increasingly systemic risk to the global economy, and nancial

markets are beginning to reect this reality. Investors now recognize that climate-related

risks—both physical and transitional—can materially aect asset returns. Yet, hedging

this new type of risk remains fundamentally challenging. Traditional insurance contracts

are ill-suited to this task, as climate risk is not a rare event but a near certainty over the

long run, making insurers reluctant to oer coverage. As a result, one practical alterna-

tive is self-insurance through strategic asset allocation—favoring assets that are expected

to appreciate or remain resilient during periods of heightened climate risk. However, due

in particular to the well-known weak factor problem—when test assets exhibit limited

exposure to the hedging target (see, e.g., Giglio et al. (2023b) and Pukthuanthong et al.

(2022))—identifying eective hedge portfolios is particularly dicult. This paper pro-

poses a new, exible, data-driven approach to constructing hedge portfolios that allow to

construct eective hedge portfolios.

The method builds on the traditional factor mimicking portfolio (FMP) approach

pioneered by Huberman et al. (1987) (see also Breeden et al. (1989) and Lamont (2001)),

which aims to construct hedge portfolios based on historical comovements between asset

returns and a given risk factor. While commonly used for hedging macroeconomic risks,

the standard FMP method typically projects the target series onto the returns of base

assets, selecting those with the strongest estimated loadings to form the hedge portfolio1.

When applied to climate risk, however, the FMP method often performs poorly, for two

main reasons. First, as mentioned above, climate risk is a weak factor: asset returns show

limited sensitivity to its uctuations. This low signal-to-noise ratio inates estimation

error in factor exposures and degrades out-of-sample hedging performance. Second, as

Alekseev et al. (2022) highlight, the FMP method tends to be “very sensitive to the

availability of time-series data, and suffers when the time series is short ”. Since climate-

related risks only began receiving signicant investor attention in the early 2010s, the

1See, e.g., Giglio and Xiu (2021), Giglio et al. (2022), Giglio et al. (2023a), Giglio et al. (2023b),
Jurczenko and Teiletche (2022), Pukthuanthong et al. (2022).
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(eective and usable) sample length is at most 25 years.2 This paper introduces a two-

step framework that addresses both of these limitations.

In the rst step, I estimate the exposures of base assets to climate risk—so-called cli-

mate betas—through simple contemporaneous univariate regressions of asset returns on

climate risk indices3. A key innovation at this stage is the use of higher-frequency data.

Previous studies have been constrained to monthly or quarterly frequencies due to data

limitations: for example, Engle et al. (2020) use monthly indices, while Alekseev et al.

(2022) and Cao et al. (2024) rely on quarterly data from fund managers’ trading decisions

or earnings calls. By contrast, I exploit ve climate risk indices available at the daily

level—the Media Climate Change Concern (MCCC) index of Ardia et al. (2023), along

with the International Summit, Global Warming, Natural Disaster, and U.S. Climate

Policy indices of Faccini et al. (2023). Importantly, the only input required on the asset

side is basic return data, which is readily available at high frequencies. Operating in a

higher-frequency data environment oers two key advantages. First, it increases the num-

ber of observations, thereby improving the statistical accuracy of estimated exposures.

Second, it allows the capture of potentially distinct temporal dynamics between asset

returns and climate risk at dierent frequencies. This opens the door to an important

empirical question addressed in the paper: whether combining climate betas estimated

at dierent frequencies can enhance the overall hedging eectiveness.

In the second step, I integrate these climate betas directly into the FMP framework.

Specically, I project the monthly climate risk series onto the returns of portfolios formed

using beta-sorted base assets from the prior month. This reduces the dimensionality of the

estimation problem, which mitigates the limited time-series data issue discussed above.

For example, projecting the climate series onto thousands of individual assets would

almost certainly lead to infeasability to the curse of dimensionality problem (N > T ). By

constructing a small number of portfolios (e.g., N = 3), each composed of these thousands

2See also footnote 2 in Alekseev et al. (2022): “Prior to 2010, climate risks were hardly incorporated
into market prices and likely did not affect investor behavior, making all of these approaches difficult to
implement.”

3For alternative methods for estimating climate betas, see e.g., Sautner et al. (2023b), Sautner et al.
(2023a) or Li et al. (2023)
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of base assets, I can circumvent the issue. Not that this approach is not in itself a

novelty of this paper. In fact, it aligns perfectly with portfolio-based regression framework

of Engle et al. (2020). However, it is a fundamentally dierent way to implement it:

while Engle et al. (2020) form their portfolios by sorting assets based on green score

characteristics, I use a purely data-driven characteristic—the climate betas estimated in

the rst step.

A central goal of this paper is to avoid narrative-driven portfolio construction and rely

instead on historical observable comovement patterns, that is, remain as much data-driven

as possible. Many prior studies assume a narrative-based construction that determines ex

ante what “should” proxy for climate risk, typically arguing that greener assets are better

hedges against climate risk. For instance, Engle et al. (2020) construct portfolios based

on green ratings, drawing on models studying investor preferences for sustainability (e.g.,

Andersson et al. (2016), Bolton and Kacperczyk (2021), Pàstor et al. (2021), Pedersen

et al. (2021)). In contrast, this paper makes no ex ante assumption about which assets

should hedge climate risk.

A dierent approach is pursued by Alekseev et al. (2022), who examine how mutual

fund managers reallocate portfolios in response to idiosyncratic shifts in their beliefs about

climate risk. They show that a portfolio long in stocks bought and short in stocks sold by

such managers appreciates during negative aggregate climate news shocks. This method

delivers strong hedging performance, outperforming traditional FMP approaches that

they also implement for comparisons. More recently, De Nard et al. (2024) use an FMP

framework with sustainable funds, estimating exposures based on returns projected onto

a climate risk index, then optimizing the hedge portfolio with a variance minimization

objective. In another study, Cao et al. (2024) construct hedge portfolios based on market

reactions to climate discussions in earnings calls.

Hedging performance in this literature is generally assessed using out-of-sample cor-

relations between hedge portfolio returns and AR(1) innovations of a given climate risk

target series. For example, Engle et al. (2020) report a correlation of 0.17 using data

from March 2012 to December 2016, and their Wall Street Journal Climate Change News
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index as hedging target. For the period between January 2015 and December 2019, Alek-

seev et al. (2022) nd correlations of up to 0.37 with the MCCC index and similar or

lower values with the four climate risk indices from Faccini et al. (2023). Using their

own mimicking portfolio construction methods, they obtain correlations up to 0.18 for

the MCCC index, and in the range [003, 006] for the four indices of Faccini et al. (2023).

In contrast to existing FMP-based methods, my two-step method generally yields higher

out-of-sample correlations. Compared to more complex alternatives like that of Alekseev

et al. (2022), I deliver comparable or superior performance, with the added advantage

of simplicity and superior replicability—it does not rely on specic and hard-to-obtain

inputs such as fund manager trades.

Furthermore, I also explore the role of the investment universe in determining hedging

eectiveness. Given the weak factor problem, asset selection is critical: the goal is to nd

assets whose returns exhibit stable and measurable sensitivity to climate risk. Individual

stocks may be too noisy, while more aggregated instruments—such as portfolios based on

industries—may provide more reliable signals. To remain data-driven, I do not choose

ex ante a given univrse but instead consider multiple candidates, from individual stocks

(including about 2,000 assets) to General Industry Classication Standard (GICS) levels

1, 2 and 3 portfolios. I nd that the individual stock universe consistently delivers superior

hedging performance compared to the GICS-based universes, suggesting that selecting a

suciently large universe is an important driver in building an eective hedge portfolio.

Finally, this framework is practical as it oers a high degree of exibility. Investors

can tailor implementation to their needs—choosing the frequency of estimation or ap-

plying their own investment universe. Moreover, while the baseline specications of this

framework return a zero-investment long-short portfolio, the method easily accommo-

dates long-only or other weight-related constraints.

The remainder of the paper is structured as follows. Section 2 presents the two-step

methodology, data, and empirical designs. Section 3 reports in-sample results across

multiple asset universes and specications. Section 4 evaluates the hedging performance

out-of-sample.
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2. Methodology, Empirical Settings and Data

This section presents the two-step framework developed to construct hedge portfolios

for climate risk, and outlines the empirical design and datasets employed. The method-

ology builds on the classical factor mimicking portfolio (FMP) approach but introduces

key innovations to address its limitations in the context of climate risk—particularly the

weak factor problem and limited time-series availability.

2.1. General Framework

The framework proceeds in two steps. The rst step estimates climate betas, which

quantify each asset’s sensitivity to climate risk. These betas are obtained through simple

univariate time-series regressions of excess returns on the hedging target. Formally, for

each base asset i = {1, 2,    , N}, I estimate:

ri,t = βiCRt +

K

k=1

λi,kCTRLi,k,t + ϵi,t (1)

where ri,t denotes demeaned excess returns of asset i, CRt is the (mean-zero) climate risk

target series, and CTRLi,k,t are K control variables.

Importantly, to potentially improve statistical precision and capture richer comove-

ment structures, I consider estimating these regressions at three dierent frequencies,

daily, weekly, and monthly, yielding three sets of estimated betas: β̂d, β̂w and β̂m, re-

spectively. In the baseline specication, I include the three Fama-French factors—market

(MKT ), size (SMB), and value (HML)—as controls.

The second step translates these estimated betas into portfolio weights. To do so,

dierent paths are possible. In this paper, I follow the portfolio-based projection approach

of Engle et al. (2020) where the hedging target is projected onto portfolios returns that

have the original base assets as components. More precisely, I employ portfolios sorted

by climate betas. Specically, I estimate:

CRt = α +


f∈F
δFf

Zβ
Ff

t−1

′
rt +

K

k=1

ψkZ
CTRLk
t−1

′
rt + ϵt (2)
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where ZX denotes a cross-sectional transformation of variable X that has a mean of

zero, and rt is the vector of asset returns in month t. Therefore, the product Zβ
Ff

t−1

′
rt

is a scalar that represents the return on a zero-investment portfolio that tilts toward

assets with high or low climate betas estimated at daily, weekly or monthly frequency

Ff ∈ {d, w,m}. The estimated coecient δFf
captures the sensitivity of the hedging

target to this portfolio. Then, the nal weights for base assets at time T are recovered by

multiplying the transformed value of their climate betas at time T (a N vector) with δ̂Ff

(a scalar), that is, ŵFf

T = Zβ
Ff

T δ̂Ff
, and summing across selected frequencies yields the

full weight vector: ŵT =


f∈F ŵ
Ff

T . Because by construction the sum of the elements of

Zβ
Ff

T is always zero, the nal weights ŵT also sum to zero. Stated dierently, the hedge

portfolio is a long-short zero-investment portfolio.

As with the rst step, the investor can exibly select control characteristics for in-

clusion. In the baseline case, I follow Engle et al. (2020) and include cross-sectional

transformations of the SIZE and Book-to-Market (BM) characteristics, computed from

the distribution across base assets.4

While this framework draws on the structure of the FMP method of Engle et al.

(2020), its implementation here departs fundamentally from their narrative-driven ap-

proach. Rather than assuming what specic characteristics (e.g., green scores) should be

the information to rely on when forming the FMP, I adopt a fully data-driven strategy

that lets historical return comovements speak for themselves.

2.2. Empirical Settings and Data

The general framework described above oers considerable exibility. In practical

applications, the hedging investor has multiple degrees of freedom in how the method is

implemented. This section outlines the main empirical choices made for this paper, as

well as the data sources and processing steps involved.

4Note that these are not the same controls as in regressions (1) as they are specic to the universe of
N base assets. Specically, ZSIZEk

t−1 is constructed based on distribution of market capitalization of the

N base assets, and ZBMk

t−1 is constructed based on distribution of book-to-market of the N base assets.
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2.2.1. Hedging Target

A rst and crucial choice in the framework is the denition of the hedging target,

denoted CRt in the previous equations. I consider ve climate risk indices as potential

targets: the Media Change in Climate Concerns (MCCC) index from Ardia et al. (2019),

and four indices developped by Faccini et al. (2023), namely the International Summit

(INTS), Global Warming (GWAR), Natural Disaster (NATD) and U.S. Climate Policy

(USCP) indices. All indices are available at the daily frequency. The MCCC index spans

from January 2003 to December 2023, while the four indices of Faccini et al. (2023) cover

January 2000 to June 2023. Following the litterature (e.g., Alekseev et al. (2022) or

Engle et al. (2020)) I dene each hedging target series as the AR(1) innovations from the

original index levels. Figure 1 illustrates the time series these ve hedging targets starting

in 2010. Since climate betas are estimated at three distinct frequencies—daily, weekly,

and monthly—the hedging targets are also converted to these frequencies accordingly. As

expected, lower-frequency versions of the target appear visually smoother and less noisy,

providing an early indication that climate betas at dierent frequencies may capture

distinct elements of the underlying dependence structure.

2.2.2. Investment Universe

A second key empirical decision concerns the choice of hedging instruments—that

is, the universe of base assets used to construct the hedge portfolio. In the context of

climate risk, this choice is particularly important due to the weak factor nature of the

climate signal: exposures to climate risk are likely to be small, noisy, and heterogeneous

across assets. The trade-o lies between choosing a broad universe to increase the chance

of capturing relevant exposures, and narrowing the universe to reduce estimation noise.

For example, using individual stocks oers broad coverage and increases the likelihood of

including assets with meaningful climate exposure. However, climate risk is generally not

a rst-order driver of stock returns, and the resulting signal may be dominated by noise.

Alternatively, using more aggregated portfolios—such as industry-level groupings—can

help mitigate idiosyncratic noise and may align better with economic intuition, as sectors

like Energy, Utilities, and Materials are often viewed as more climate-sensitive.
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To maintain a data-driven and agnostic stance, I do not commit to a single universe

ex ante. Instead, I conduct the analysis across four distinct asset universes:5 (i) STOCK,

a universe of individual equities, comprising the 2,000 largest CRSP-listed stocks (share

codes 10 and 11) available at each portfolio formation date, (ii) GICS1, industry portfolios

based on the rst level of the Global Industry Classication Standard (GICS), covering

11 broad sectors, (iii) GICS2, a ner decomposition into 27 industry subgroups, and (iv)

GICS3, an even more granular classication comprising 75 industry subgroups. All the

industry portfolios are constructed using a value-weighting scheme.6

2.2.3. Other Considerations

Several additional empirical choices might aect the performance of the hedging strat-

egy.

Estimation windows in regressions (1) and (2). In the baseline specications, climate

betas are estimated using a 36-month rolling window for regression (1). For the construc-

tion of the hedging portfolio in regression (2), I use the longest available period for the

in-sample analysis, and a 36-month window for the out-of-sample analyses. As robust-

ness checks, I also consider window lengths ranging from 12 to 60 months for daily betas,

24 to 60 months for weekly betas, and 36 to 60 months for monthly betas. Similarly

for regression (2), out-of-sample window lengths from 24 to 60 months are tested. See

section III of the Appendix.

Construction of Z. A second empirical choice relates to the specication of the instrument

vector Zt−1 used to weight base assets in regression (2). I consider two alternative

constructions: standardized betas (z-scores) and sign-preserving betas. For standardized

betas, each element ofZβ
t−1 is computed as βi,t−1−β̄t−1

σ(βt−1)
. However, a potential issue with this

z-score transformation is that, by assigning negative sign to the betas below the mean, it

will potentially generate implicit short positions in assets that are nonetheless positively

correlated with the climate risk target (that is, asset with positive climate betas). To

5Additional universes are considered in robustness checks; see section I of the Appendix.
6I could also consider portfolios sorted on environmental characteristics (e.g., GHG emissions or ESG

scores). I however refrain from using such portfolios as this would reintroduce narrative-driven choices
into the analysis and somewhat go against the data-driven philosophy of the framework.
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preserve directional exposure, I propose the sign-preserving approach where two separate

portfolios are formed: one for assets with positive betas (β+) and one for those with

negative betas (β−). For each portfolio, weights are proportional to the magnitude of the

betas: w+
i = β+

i 
N

+

i=1 β
+
i and w−

i = β−
i 

N
−

i=1 β
−
i . Then, the vector Zt−1 is constructed

such that Zi = w+
i if the asset i has a positive beta, and Zi = −w−

i if the asset i has a

negative beta. This approach maintains the sign of exposures and ensures that positively

and negatively correlated assets contribute accordingly.

Portfolio Constraints. While the baseline hedging portfolio is constructed as a long-short,

zero-investment portfolio, additional constraints can be introduced for practical imple-

mentation. For example, a long-only, fully invested portfolio can be formed by setting

negative weights to zero and rescaling the remaining weights to sum to one. Similarly,

constraints such as bounds on short positions can be imposed through appropriate trun-

cation and normalization of the weights.

Control Variables. Finally, the choice of control variables in the regression models can

inuence the hedging performance. In the baseline specication, I control for the three

Fama and French (1993) factors in regressions (1), and the SIZE and BM characteristics

for regression (2). Additional specications with alternative control sets are examined in

section III of the Appendix.

3. In-Sample Analyses

3.1. Climate Betas

I begin by analyzing results from step (1) of the framework. The analysis covers the

period from January 2010 to December 2023, using a 36-month rolling estimation window.

I consider the four investment universes introduced earlier—STOCK, GICS1, GICS2, and

GICS3—and ve hedging targets: the AR(1) innovations of the MCCC, INTS, GWAR,

NATD, and USCP indices. For each combination of universe and hedging target, I

estimate climate betas at daily, weekly, and monthly frequencies, generating a time series

of beta distributions spanning December 2012 to December 2023.

Figure 2 summarizes the climate beta estimates for the MCCC index. Several observa-
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tions emerge. First, across all universes, most climate betas are not statistically dierent

from zero, consistent with the weak factor problem discussed earlier: it is dicult to nd

base assets with strong, systematic exposure to climate risk. Nonetheless, as indicated

by the blue dots in the gure, a non-negligible subset of base assets exhibits statistically

signicant betas, suggesting that pockets of meaningful exposure may exist—though their

relevance for hedging remains an open question. Second, climate beta estimates appear

to be frequency-dependent. For instance, in the STOCK universe, daily betas generally lie

within the range of [−002, 002], while weekly betas extend to approximately [−02, 02],

and monthly betas show a much wider dispersion, spanning approximately [−1, 4]. This

scaling with frequency may suggest that lower-frequency betas capture longer-horizon,

more persistent patterns of dependence between base assets and climate risk. However,

at this stage, the implications for hedging performance remain to be established. To

investigate further, I examine the cross-frequency correlation structure of the estimated

climate betas. Specically, for each frequency Ff I form a T × N matrix of estimated

climate betas βFf , and compute row-wise cross-sectional correlations between frequen-

cies—namely Daily-Weekly, Daily-Monthly, and Weekly-Monthly. Figure 3 presents the

resulting distributions. Interestingly, while the correlations are generally positive, they

rarely exceed 0.50 in the STOCK universe. This suggests that climate betas at dierent

frequencies may be capturing distinct features of the climate-risk–asset-return relation-

ship. In the industry-based universes (GICS1–3), correlations exhibit wider dispersion,

and in many cases the rst quartile (lower hinge) falls below zero, indicating substantial

heterogeneity in frequency-specic exposures across sectors. These results tend do rein-

force the idea that beta estimates at dierent frequencies encode dierent facets of the

underlying dependence structure.

3.2. Second-step Estimation Results

With climate betas in hand, I now turn to the second step of the framework and

estimate regression (2). This step maps climate betas into weights used to construct

the hedging portfolio. To examine the role of frequency, I consider seven models using

dierent combinations of betas: three models using a single frequency (daily, weekly, or
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monthly), three models using two frequencies, and one model using all three frequen-

cies. In all cases, the instrument vectors Zβ
Ff

t−1 are constructed using the sign-preserving

method described earlier. As in Step 1, the dependent variables are AR(1) innovations of

the ve climate indices. The estimation period extends from January 2013 to December

2023 for the MCCC index, and from January 2013 to June 2023 for the four indices of

Faccini et al. (2023). Control variables ZCTRLk
t−1 include size and book-to-market charac-

teristics, standardized using z-scores.7

Table 1 reports the estimated coecients for the MCCC hedging target; results for

other indices are presented in section II of the Appendix. Several ndings are notable.

Across all universes, the estimated coecients δFf
for daily and weekly climate betas are

consistently negative and frequently statistically signicant. For instance, in the STOCK

universe, model (1)—which includes only daily betas—yields an estimate of −157, sig-

nicant at 10% level. In model (4), which includes both daily and weekly betas, the

coecients are −057 and −244, respectively. In contrast, the estimated coecients for

monthly betas are always positive and typically signicant. These results seem to suggest

a frequency-dependent reversal in the sign of optimal weights: base assets with negative

daily or weekly betas should be overweighted, while those with positive monthly betas

should also be overweighted. In other words, high-frequency betas exhibit a “reversal”

pattern, whereas low-frequency betas follow a “momentum” pattern.

4. Out-of-sample results

Ultimately, the eectiveness of any hedging strategy must be judged by its out-of-

sample performance—how well it mitigates realized climate risk after the portfolio is

formed. To assess this, I implement a 36-month rolling window procedure for estimating

regression (2), starting in December 2015. Specically, the rst estimation corresponds

to what the hedging investor would do at the end of December 2015: she would form

her portfolio based on past observations from January 2013 to December 2015, and hold

7Control characteristics are based on the constituents of each universe. For STOCK, controls are com-
puted across the 2,000 stocks. For the GICS-based universes, controls are computed from the underlying
securities forming the portfolios. See Appendix III.
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it during the following month. Then, at the end of January 2016, she would form her

portfolio based on past observations from February 2013 to January 2016, and hold it

during the following month. The process is repeated until the sample is exhausted, that

is, November 2023. To facilitate comparison with the study of Alekseev et al. (2022), I

also consider a shorter evaluation window ending in December 2019.8

As for the full-sample analysis, I consider seven models based on varying combinations

of climate betas (daily, weekly, monthly), and the ve hedging targets derived from AR(1)

innovations of the MCCC, INTS, GWAR, NATD, and USCP indices. The instrument

vectors Z are constructed using the sign-preserving approach, and the control variables

are standardized z-scores for the size and book-to-market characteristics.

To measure hedging performance, I rely on Pearson correlations between monthly

hedge portfolio returns and the realized monthly values of the hedging targets. Ta-

ble 2 reports these out-of-sample correlations. Focusing rst on the 2016–2019 period—

approximately aligned to the evaluation period in Alekseev et al. (2022)—performance

under my two-step framework is broadly comparable to theirs. For instance, with respect

to the MCCC target, their best-performing specication (“Pooled: All Shocks”, see their

table 9) yields a correlation of 0.37, while my framework produces an average correlation

of 0.36 across the seven model variants. For the NATD target, their correlation is 0.06

versus an average of 0.10 in my framework. For the USCP target, both approaches yield

near-zero correlations. For the GWAR and INTS targets, however, my approach under-

performs their best performing method. On the other hand, when benchmarked against

their factor-mimicking most sophisticated method—“Lasso Reg: All-Industries + FF”—

the two-step framework introduced here often delivers superior performance. Specically,

for MCCC and NATD, Alekseev et al. (2022) report correlations of −0.16 and −0.07,

respectively, whereas my method returns 0.36 and 0.10.

These comparisons underscore two key advantages of the two-step framework proposed

here: (i) superior performance relative to other factor-mimicking portfolio approaches,

8Note that Alekseev et al. (2022) use data from 2015 to 2019. Due to my reliance on a 36-month
estimation window for both Step (1) and Step (2), my earliest possible evaluation period begins in
January 2016. In section III of the Appendix, I examine results based on a 24-month window for 2015
as a robustness check.
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and (ii) competitive performance relative to more sophisticated, non-FMP methods, but

with signicantly greater transparency, simplicity, and replicability, since it avoids pro-

prietary or hard-to-obtain data sources.

Extending the evaluation period to December 2023 yields similar qualitative patterns,

albeit with somewhat reduced magnitudes. The decline in performance may be partly

attributable to structural changes in asset return dynamics or climate sentiment during

this period—most notably, the COVID-19 shock in 2020, which may have introduced

noise or disrupted the usual link between climate risks and nancial markets.

Lastly, comparing performance across investment universes reveals a clear result:

individual stocks outperform industry-level portfolios in this framework. Specically,

the STOCK universe consistently delivers higher out-of-sample correlations, whereas the

GICS-based universes often yield low or even negative correlations. This nding highlights

the importance of selecting a suciently high number of base assets. Portfolios built from

broad industry aggregates appear too coarse to capture the nuanced exposures necessary

for eective climate risk hedging.
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Table 1: Full Sample Estimation Results
This table shows full sample results for my two-step framework for four different universes and
seven specifications depending on the number of climate betas included as regressors (columns).
In all cases, the hedging target corresponds to AR(1) innovations of the MCCC index. In step (1)
the climate betas are estimated with the three Fama and French (1993) factors as controls and a
36 months estimation window. For step (2), all seven models include a constant and the control
variables size and book-to-market (not reported), and the estimation period is from January
2013 to December 2023 (T = 132 months). Bold values indicate statistical significance at the
10% level or less.

(1) (2) (3) (4) (5) (6) (7)

Individual Stocks (STOCK)

Zβ
d

t−1

′
rt −1.57 −057 −138 −022

Zβ
w

t−1

′
rt −2.67 −2.44 −2.78 −2.66

Zβ
m

t−1

′
rt 1.08 0.89 1.21 1.18

Adj.R2 .03 .07 .03 .08 .05 .10 .10
GICS Level 1 Portfolios (GICS1)

Zβ
d

t−1

′
rt −0.66 −0.24 −0.71 −0.30

Zβ
w

t−1

′
rt −1.02 −0.92 −1.01 −0.89

Zβ
m

t−1

′
rt 0.44 0.51 0.41 0.44

Adj.R2 .02 .05 .02 .05 .03 .05 .05
GICS Level 2 Portfolios (GICS2)

Zβ
d

t−1

′
rt −1.14 −1.13 −0.72 −0.74

Zβ
w

t−1

′
rt −0.67 −0.01 −0.25 0.10

Zβ
m

t−1

′
rt 1.19 0.91 1.16 0.91

Adj.R2 .05 .02 .07 .05 .08 .07 .08
GICS Level 3 Portfolios (GICS3)

Zβ
d

t−1

′
rt −1.27 −0.83 −1.04 −0.73

Zβ
w

t−1

′
rt −1.96 −1.49 −1.51 −1.11

Zβ
m

t−1

′
rt 1.86 1.70 1.60 1.56

Adj.R2 .04 .05 .07 .06 .09 .09 .10

17



Table 2: Out-of-Sample Hedging Performance
This table presents out-of-sample Pearson correlations between the monthly excess returns of
various hedge portfolios and various hedging targets. Each column within panels represents
a specification of regression (2) that incorporates one, two, or three frequency-specific climate
betas obtained from regressions (1). To facilitate comparisons, in addition to the main evaluation
period (2016-2023), I report results for the 2016-2019 period, corresponding approximately to
the period in Alekseev et al. (2022).

Panel A: MCCC Index Panel B: International Summit Index

Model (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)
d w m d,w d,m w,m d,w,m d w m d,w d,m w,m d,w,m

Evaluation Period: 2016-2019 (≈ Alekseev et al., 2022)
STOCK .25 .42 .15 .42 .33 .47 .46 .06 −30 .12 −04 .14 .09 .09
GICS1 −19 −10 .15 −13 .14 .04 .03 −02 .04 .14 .04 .13 .06 .04
GICS2 .04 −22 .03 −10 .18 −14 .09 −12 −43 .12 −40 .02 −28 −34

GICS3 −21 .07 .12 −13 .05 .15 −03 −08 .11 −12 .10 .00 .02 .04
Evaluation Period: 2016-2023
STOCK .01 .24 −.02 .22 .01 .24 .21 .09 −.16 .06 .00 .11 .02 .06
GICS1 −.08 .01 .07 −.06 .06 .05 .02 −.02 .09 .05 .07 .04 .08 .06
GICS2 .06 −.16 .18 −.11 .14 .04 .01 −.11 −.23 .05 −.25 .02 −.08 −.14
GICS3 .01 .12 .24 .05 .19 .21 .15 −.07 .07 −.05 .04 −.03 −.00 00

Panel C: Global Warming Index Panel D: Natural Disaster Index

Model (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)
d w m d,w d,m w,m d,w,m d w m d,w d,m w,m d,w,m

Evaluation Period: 2016-2019 (≈ Alekseev et al., 2022)
STOCK −.04 −.41 .24 −.29 .20 .09 .07 .09 .15 −.05 .16 .04 .13 .15
GICS1 .02 −.12 −.24 −.07 −.05 −.22 −.13 −.13 .11 −.09 .03 −.20 .03 −.05
GICS2 .03 −.02 .08 .03 .06 .05 .07 −.20 −.03 −.08 −.10 −.21 −.13 −.20
GICS3 −.05 .07 .01 .00 −.05 .06 −.00 −.12 .05 −.04 −.03 −.20 −.01 −.09
Evaluation Period: 2016-2023
STOCK −.05 .00 −.02 .05 −.03 .00 .04 −.05 .11 −.11 .07 −.12 .03 .01
GICS1 −.16 −.01 −.03 −.15 −.10 −.07 −.12 .06 −.08 −.04 −.05 .01 −.07 −.04
GICS2 −.02 −.19 −.01 −.06 −.05 −.14 −.10 −.09 −.10 −.26 −.11 −.19 −.07 −.10
GICS3 −.17 −.05 −.24 −.11 −.29 −.12 −.18 −.11 −.13 −.00 −.19 −.15 −.05 −.15

Panel E: U.S. Climate Policy Index

Model (1) (2) (3) (4) (5) (6) (7)
d w m d,w d,m w,m d,w,m

Evaluation Period: 2016-2019 (≈ Alekseev et al., 2022)
STOCK .05 −.21 .12 −.04 .12 −.07 .02
GICS1 −.08 −.06 −.05 −.14 −.03 −.10 −.16
GICS2 −.10 −.14 .06 −.15 −.11 .01 −.14
GICS3 .07 .18 .16 .10 .13 .18 .14
Evaluation Period: 2016-2023
STOCK −.10 −.03 −.11 −.13 −.16 −.20 −.27
GICS1 −.33 −.17 −.12 −.22 −.33 −.22 −.28
GICS2 −.17 .11 .10 .04 .02 .04 −.04
GICS3 .08 −.12 .00 .02 −.00 −.06 −.07
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Figure 1: Hedging Targets Series
This figure displays the various hedging target series used in this paper. All series correspond
to AR(1) innovations of a given climate index. In each panel, the left, mid and right plots
correspond to daily, weekly and monthly frequency, respectively.

(a) MCCC Index

(b) International Summit Index

(c) Global Warming Index

(d) Natural Disaster Index

(e) U.S. Climate Policy Index
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Figure 2: Climate Betas Distributions
This figure displays the distributions of climate betas for the STOCK, GICS1, GICS2 and GICS3
universes, where the hedging target series in regressions (1) corresponds to AR(1) innovations
of the MCCC Index. In each panel, the left, mid and right plots correspond to daily, weekly and
monthly climate betas, respectively. Blue dots indicate significance at the 10% level or less.

(a) Individual Stocks (STOCK)

(b) GICS Level 1 Portfolios (GICS1)

(c) GICS Level 2 Portfolios (GICS2)

(d) GICS Level 3 Portfolios (GICS3)
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Figure 3: Climate Betas Frequency Pairwise Correlations
This figure displays the distributions of the frequency-pairwise—Daily-Weekly, Daily-Monthly
and Weekly-Monthly—cross-sectional correlations of climate betas for the STOCK, GICS1, GICS2
and GICS3 universes and various hedging targets. For the MCCC index (all other indices) the
correlations are based on T = 133 months from January 2016 to December 2023 (T = 127
months from January 2016 to June 2023). The red points indicate the means.

(a) Individual Stocks (STOCK)

(b) GICS Level 1 Portfolios (GICS1)

(c) GICS Level 2 Portfolios (GICS2)

(d) GICS Level 3 Portfolios (GICS3)
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